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Setup: Points and Lines

Suppose we are given n points, P, and m lines, L.

Here, n = 6, m = 5, and notice that there are 7 pairs of points and
lines, (p, ℓ), such that the point p lies on ℓ. Such pairs are known as
incidences.
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Setup: Incidences

Question

Suppose we are given n points, P, and m lines, L, in Euclidean space.
How large can the following be:

I(P,L) := #{(p, ℓ) ∈ P × L : p ∈ ℓ}?

Remark : We suppose without loss of generality that every line
contains at least one point.
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Incidences: Known Bounds

Question

Suppose we are given n points, P, and m lines, L, in Euclidean space.
How large can the following be:

I(P,L) := #{(p, ℓ) ∈ P × L : p ∈ ℓ}?

There are a few key bounds we can know.

• Trivial bound: I(P,L) ≤ nm.

• Cauchy–Schwarz: I(P,L) ≤
√
n(nm +m2)1/2

• Szemerédi–Trotter: I(P,L) ≤ C (n2/3m2/3 + n +m)

We will spend this presentation outlining one way to prove the
Szemerédi–Trotter bound.
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Outline

1. From Points and Lines to a Graph

2. Graph Theory
2.1 Euler’s Planar Graph Theorem
2.2 The Crossing Number Lemma

3. Proving Szemerédi–Trotter
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From Points and Lines to a Graph

We transform our points P and our lines L into a graph G = (V ,E ).

• We let our points P become our vertices V (i.e. |V | = n), and

• An edge between pi and pj is formed if pi and pj are on a
common line ℓ ∈ L and the points pi and pj are adjacent on ℓ.
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Counting Edges

Lemma

Let G = (V ,E ) be the graph obtained from the previous slide on n
points and m lines. Then, |E | = I(P,L)−m.

Proof : We follow by induction on m. If there is one line, ℓ1, then
notice that the number of edges is always one less than the number of
incidences.

In the above, we have |E | = 4, I(P, ℓ1) = 5, and m = 1.
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|E | = I(P ,L)−m ctd.
We now assume the proposition holds for m lines, and show it holds
for m + 1 lines.

From the first m lines we obtain I(P,L \ ℓm+1)−m many edges, and
from the new (orange) line we obtain I(P, ℓm+1)− 1 many edges
from the base case. Hence, |E | = I(P,L)− (m + 1).

8 / 22



Developing Graph Theory

At this point, we have turned our set of n points and m lines into a
graph G = (V ,E ). In particular, we know

|V | = n and |E | = I(P,L)−m.

We will develop some graph theory to give us inequalities relating |V |
and |E | to one another.
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Graph Theory: Planar

Definition (Planar)

A graph G is planar if we can draw G such that edges only intersect
at their endpoints (i.e. no edges cross each other).
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Graph Theory: Connected

Definition (Connected)

A graph G is connected if, for each pair of vertices, there at least one
path which joins them.
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Graph Theory: Faces

Definition (Face)

A face in a planar graph G is a region bounded by a set of edges and
vertices in the embedding.
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Euler’s Theorem

Theorem (Euler’s Theorem)

Let G be a planar connected graph. Then,

V (G )− E (G ) + F (G ) = 2.

Proof Outline: We do induction on E (G ).

• Base Case: E (G ) = 1: There are only two possibilities.
• Inductive Step: Assume true for E (G ) = k and prove true for

E (G ) = k + 1.

- If possible: remove one edge and use inductive hypothesis.
- Otherwise, G is a “tree” and we can prove this directly for trees.
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Euler’s Theorem ctd.

More generally,

Theorem

Let G be a planar graph. Then,

V (G )− E (G ) + F (G ) = k(G ) + 1

where k(G ) is the number of connected components of G .
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Graph Inequalities

Lemma

If G is planar, then |E | − 3|V | ≤ 0.

Proof : From Euler’s theorem:

V − E + F ≥ 0.

Furthermore, F ≤ 2
3E . Combining these and rearranging the

inequality gives the desired result.

As we cannot guarantee a planar graph, we must obtain a more
general result relating edges and vertices, which can be done once we
define crossing numbers.
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Crossing Number cr(G )

Definition (Crossing Number)

Given a graph G , we define cr(G ) to be the minimum number of
edge crossings achievable when laying out G in the 2D plane.

For example: G is planar if and only if cr(G ) = 0.
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Graph Inequalities ctd.

Lemma

If G is a graph, then

|E | − 3|V | ≤ cr(G ).

Proof : If cr(G ) = 0 then G is planar and we already proved the
result. Otherwise, we remove edges to make G planar.

Hence,

|E ′| − 3|V ′| ≤ 0 =⇒ (|E | − cr(G ))− 3|V | ≤ 0.
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The Crossing Number Lemma

As it turns out, the previous inequality is not as good as we need for
the proof of Szemerédi–Trotter. But, one can use probability to
improve the inequality, and obtain the following result.

Lemma (Crossing Number Lemma)

Let G = (V ,E ) be a graph with |E | ≥ 4|V |. Then,

cr(G ) ≥ |E |3

64|V |2
.
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Proving Szemerédi–Trotter

Recall that we have taken our n points and m lines and turned it into
a graph G = (V ,E ) such that

|V | = n and |E | = I(P,L)−m.

Furthermore, recall that we want to prove

Szemerédi–Trotter : I(P,L) ≤ C (n2/3m2/3 + n +m).

We break into cases based on the Crossing Number Lemma.

Case 1 : |E | < 4|V |. Then,

I(P,L) = |E |+m < 4n +m.
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Proving Szemerédi–Trotter ctd.

Case 2 : |E | ≥ 4|V |. Then, by the Crossing Number Lemma,

|E |3

64|V |2
≤ cr(G ).

By construction, cr(G ) ≤ m2.

Rearranging and plugging in |E | and |V |, we see

I(P,L) ≤ 4n2/3m2/3 +m.

Adding these two cases together, we obtain

I(P,L) ≤ 4(n2/3m2/3 + n +m).
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Thank you for listening!

Any Questions?
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